Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.075
Filtrar
1.
Nucleic Acids Res ; 51(20): 10846-10866, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850658

RESUMO

Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.


Assuntos
Adutos de DNA , Poliaminas , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Conformação de Ácido Nucleico , Poliaminas/química , Poliaminas/metabolismo
2.
Chem Res Toxicol ; 36(2): 132-140, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626705

RESUMO

Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.


Assuntos
Acroleína , Fumar Cigarros , Adutos de DNA , Humanos , Acroleína/química , Biomarcadores , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , DNA/química , Adutos de DNA/química , Espectrometria de Massas , Proteínas/química , /metabolismo
3.
Rapid Commun Mass Spectrom ; 36(6): e9245, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939243

RESUMO

RATIONALE: Acrylamide is classified as a probable human carcinogen that is metabolised to glycidamide, which can covalently bind to DNA. The aim of this study was to investigate the formation of N7-glycidamide guanine (N7-GA-Gua) adducts in human blood DNA following exposure to acrylamide present in carbohydrate-rich foods as part of the normal human diet. METHODS: Lymphocyte DNA was extracted from blood samples obtained from healthy human volunteers. Following thermal depurination of the DNA samples, N7-GA-Gua adducts were quantified using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method incorporating a stable isotope labelled internal standard. Estimated dietary acrylamide intake was recorded by completion of food frequency questionnaires for the 24 hours prior to volunteer blood donation. RESULTS: An LC/MS/MS method was validated with a limit of detection of 0.25 fmol and a lower limit of quantitation of 0.50 fmol on column. N7-GA-Gua adducts were detected in human blood DNA with the levels ranging between 0.3 to 6.3 adducts per 108 nucleotides. The acrylamide intake was calculated from the food frequency questionnaires ranging between 20.0 and 78.6 µg. CONCLUSIONS: Identification and quantification of N7-GA-Gua adducts in the blood DNA of healthy volunteers suggests that dietary acrylamide exposure may lead to the formation of DNA adducts. This important finding warrants further investigation to ascertain a correlation between environmental/dietary acrylamide exposure and levels of DNA adducts.


Assuntos
Acrilamida/metabolismo , Cromatografia Líquida/métodos , Adutos de DNA/química , DNA/química , Exposição Dietética/efeitos adversos , Compostos de Epóxi/química , Guanina/química , Espectrometria de Massas em Tandem/métodos , Humanos , Linfócitos/química
4.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639179

RESUMO

DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).


Assuntos
Adutos de DNA/química , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Substâncias Intercalantes/química , Compostos Organoplatínicos/química , Ureia/análogos & derivados , Replicação do DNA , Humanos , Ureia/química
5.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500720

RESUMO

Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5'/3' flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair.


Assuntos
Adutos de DNA/química , Reparo do DNA/fisiologia , Adutos de DNA/genética , Reparo do DNA/genética , Mutação , Oxirredução
6.
Nature ; 596(7873): 597-602, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408320

RESUMO

ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.


Assuntos
ADP-Ribosilação , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Timina/química , Timina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Antitoxinas , Proteínas de Bactérias/química , Toxinas Bacterianas , Sequência de Bases , Biocatálise , DNA/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Nitrogênio/química , Nitrogênio/metabolismo , Poli(ADP-Ribose) Polimerases/química , Origem de Replicação/genética , Especificidade por Substrato , Thermus/enzimologia , Timidina/química , Timidina/metabolismo
7.
J Chem Phys ; 154(18): 184101, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241037

RESUMO

We examine the use of the truncated singular value decomposition and Tikhonov regularization in standard form to address ill-posed least squares problems Ax = b that frequently arise in molecular mechanics force field parameter optimization. We illustrate these approaches by applying them to dihedral parameter optimization of genotoxic polycyclic aromatic hydrocarbon-DNA adducts that are of interest in the study of chemical carcinogenesis. Utilizing the discrete Picard condition and/or a well-defined gap in the singular value spectrum when A has a well-determined numerical rank, we are able to systematically determine truncation and in turn regularization parameters that are correspondingly used to produce truncated and regularized solutions to the ill-posed least squares problem at hand. These solutions in turn result in optimized force field dihedral terms that accurately parameterize the torsional energy landscape. As the solutions produced by this approach are unique, it has the advantage of avoiding the multiple iterations and guess and check work often required to optimize molecular mechanics force field parameters.


Assuntos
Adutos de DNA/química , Análise dos Mínimos Quadrados , Hidrocarbonetos Policíclicos Aromáticos/química , Algoritmos
8.
J Chem Phys ; 154(17): 175102, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241046

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in environments, and some of them are causative agents of human cancer. Previous studies concluded that benzo[a]pyrene-7,8-dione (BPQ), which is one kind of carcinogenic PAH metabolites, forms covalently bonded adducts with DNA, and the major adduct formed is a deoxyguanosine adduct. In this work, we investigate the interactions between BPQ and DNA molecules via first-principles calculations. We identify six possible DNA adducts with BPQ. In addition to the four adducts forming covalent bonds, there are two adducts bound purely by van der Waals (vdW) interactions. Remarkably, the two vdW-bound adducts have comparable, if not larger, binding energies as the covalent adducts. The results may help us gain more understanding of the interactions between PAH metabolites and DNA.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Benzopirenos/metabolismo , Adutos de DNA/metabolismo , Estrutura Molecular
9.
Biochemistry ; 60(23): 1797-1807, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080848

RESUMO

DNA-protein cross-links (DPCs) are unusually bulky DNA lesions that form when cellular proteins become trapped on DNA following exposure to ultraviolet light, free radicals, aldehydes, and transition metals. DPCs can also form endogenously when naturally occurring epigenetic marks [5-formyl cytosine (5fC)] in DNA react with lysine and arginine residues of histones to form Schiff base conjugates. Our previous studies revealed that DPCs inhibit DNA replication and transcription but can undergo proteolytic cleavage to produce smaller DNA-peptide conjugates. We have shown that 5fC-conjugated DNA-peptide cross-links (DpCs) placed within the CXA sequence (X = DpC) can be bypassed by human translesion synthesis (TLS) polymerases η and κ in an error-prone manner. However, the local nucleotide sequence context can have a strong effect on replication bypass of bulky lesions by influencing the geometry of the ternary complex among the DNA template, polymerase, and the incoming dNTP. In this work, we investigated polymerase bypass of 5fC-DNA-11-mer peptide cross-links placed in seven different sequence contexts (CXC, CXG, CXT, CXA, AXA, GXA, and TXA) in the presence of human TLS polymerase η. Primer extension products were analyzed by gel electrophoresis, and steady-state kinetics of the misincorporation of dAMP opposite the DpC lesion in different base sequence contexts was investigated. Our results revealed a strong impact of nearest neighbor base identity on polymerase η activity in the absence and presence of a DpC lesion. Molecular dynamics simulations were used to structurally explain the experimental findings. Our results suggest a possible role of local DNA sequence in promoting TLS-related mutational hot spots in the presence and absence of DpC lesions.


Assuntos
Citosina/análogos & derivados , Reparo do DNA/fisiologia , DNA/química , Arginina/química , Sequência de Bases/genética , Citosina/química , Adutos de DNA/química , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Histonas/metabolismo , Humanos , Cinética , Lisina/química , Mutação/genética , Peptídeos/química
10.
Arch Toxicol ; 95(6): 1917-1942, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34003343

RESUMO

Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.


Assuntos
Adutos de DNA/toxicidade , Dano ao DNA/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Biomarcadores/metabolismo , Adutos de DNA/química , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Medição de Risco/métodos
11.
Food Chem Toxicol ; 153: 112253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015424

RESUMO

Estragole and anethole are secondary metabolites occurring in a variety of commonly used herbs like fennel, basil, and anise. Estragole is genotoxic and carcinogenic in rodents, which depends on the formation of 1'-sulfoxyestragole after hydroxylation and subsequent sulfoconjugation catalyzed by CYP and SULT, respectively. It was hypothesized recently that anethole may be bioactivated via the same metabolic pathways. Incubating estragole with hepatic S9-fractions from rats and humans, specific adducts with hemoglobin (N-(isoestragole-3-yl)-valine, IES-Val) and DNA (isoestragole-2'-deoxyguanosine and isoestragole-2'-deoxyadenosine) were formed. An isotope-dilution technique was developed for the quantification of IES-Val after cleavage with fluorescein isothiocyanate (FITC) according to a modified Edman degradation. The same adducts, albeit at lower levels, were also detected in reactions with anethole, indicating the formation of 3'-hydroxyanethole and the reactive 3'-sulfoxyanethole. Finally, we conducted a pilot investigation in which IES-Val levels in human blood were determined during and after the consumption of an estragole- and anethole-rich fennel tea for four weeks. A significant increase of IES-Val levels was observed during the consumption phase and followed by a continuous decrease during the washout period. IES-Val may be used to monitor the internal exposure to the common reactive genotoxic metabolites of estragole and anethole, 1'-sulfoxyestragole and 3'-sulfoxyanethole, respectively.


Assuntos
Derivados de Alilbenzenos/toxicidade , Anisóis/toxicidade , Adutos de DNA/química , Foeniculum/química , Hemoglobinas/química , Derivados de Alilbenzenos/metabolismo , Animais , Anisóis/metabolismo , Bebidas/análise , Biomarcadores/sangue , Humanos , Ratos
12.
Rapid Commun Mass Spectrom ; 35(13): e9095, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33821547

RESUMO

RATIONALE: As a new approach to DNA adductomics, we directly reacted intact, double-stranded (ds)-DNA under warm conditions with an alkylating mass tag followed by analysis by liquid chromatography/mass spectrometry. This method is based on the tendency of adducted nucleobases to locally disrupt the DNA structure (forming a "DNA bubble") potentially increasing exposure of their nucleophilic (including active hydrogen) sites for preferential alkylation. Also encouraging this strategy is that the scope of nucleotide excision repair is very broad, and this system primarily recognizes DNA bubbles. METHODS: A cationic xylyl (CAX) mass tag with limited nonpolarity was selected to increase the retention of polar adducts in reversed-phase high-performance liquid chromatography (HPLC) for more detectability while maintaining resolution. We thereby detected a diversity of DNA adducts (mostly polar) by the following sequence of steps: (1) react DNA at 45°C for 2 h under aqueous conditions with CAX-B (has a benzyl bromide functional group to label active hydrogen sites) in the presence of triethylamine; (2) remove residual reagents by precipitating and washing the DNA (a convenient step); (3) digest the DNA enzymatically to nucleotides and remove unlabeled nucleotides by nonpolar solid-phase extraction (also a convenient step); and (4) detect CAX-labeled, adducted nucleotides by LC/MS2 or a matrix-assisted laser desorption/ionization (MALDI)-MS technique. RESULTS: Examples of the 42 DNA or RNA adducts detected, or tentatively so based on accurate mass and fragmentation data, are as follows: 8-oxo-dGMP, ethyl-dGMP, hydroxyethyl-dGMP (four isomers, all HPLC-resolved), uracil-glycol, apurinic/apyrimidinic sites, benzo[a]pyrene-dGMP, and, for the first time, benzoquinone-hydroxymethyl-dCMP. Importantly, these adducts are detected in a single procedure under a single set of conditions. Sensitivity, however, is only defined in a preliminary way, namely the latter adduct seems to be detected at a level of about 4 adducts in 109 nucleotides (S/N ~30). CONCLUSIONS: CAX-Prelabeling is an emerging new technique for DNA adductomics, providing polar DNA adductomics in a practical way for the first time. Further study of the method is encouraged to better characterize and extend its performance, especially in scope and sensitivity.


Assuntos
Adutos de DNA/análise , Animais , Benzo(a)pireno/análise , Compostos de Benzil , Cátions , Bovinos , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Adutos de DNA/metabolismo , Etilaminas , Guanina/análogos & derivados , Guanina/análise , Humanos , Nucleotídeos/metabolismo , Radioisótopos de Fósforo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Uracila/análogos & derivados , Uracila/análise
13.
J Biol Chem ; 296: 100642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839151

RESUMO

Etheno (ε)-adducts, e.g., 1,N2-ε-guanine (1,N2-ε-G) and 1,N6-ε-adenine (1,N6-ε-A), are formed through the reaction of DNA with metabolites of vinyl compounds or with lipid peroxidation products. These lesions are known to be mutagenic, but it is unknown how they lead to errors in DNA replication that are bypassed by DNA polymerases. Here we report the structural basis of misincorporation frequencies across from 1,N2-ε-G by human DNA polymerase (hpol) η. In single-nucleotide insertions opposite the adduct 1,N2-ε-G, hpol η preferentially inserted dGTP, followed by dATP, dTTP, and dCTP. This preference for purines was also seen in the first extension step. Analysis of full-length extension products by LC-MS/MS revealed that G accounted for 85% of nucleotides inserted opposite 1,N2-ε-G in single base insertion, and 63% of bases inserted in the first extension step. Extension from the correct nucleotide pair (C) was not observed, but the primer with A paired opposite 1,N2-ε-G was readily extended. Crystal structures of ternary hpol η insertion-stage complexes with nonhydrolyzable nucleotides dAMPnPP or dCMPnPP showed a syn orientation of the adduct, with the incoming A staggered between adducted base and the 5'-adjacent T, while the incoming C and adducted base were roughly coplanar. The formation of a bifurcated H-bond between incoming dAMPnPP and 1,N2-ε-G and T, compared with the single H-bond formed between incoming dCMPnPP and 1,N2-ε-G, may account for the observed facilitated insertion of dGTP and dATP. Thus, preferential insertion of purines by hpol η across from etheno adducts contributes to distinct outcomes in error-prone DNA replication.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Cromatografia Líquida , Cristalografia por Raios X , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Espectrometria de Massas em Tandem
14.
Chem Res Toxicol ; 34(4): 1004-1015, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33720703

RESUMO

The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.


Assuntos
Adutos de DNA/metabolismo , DNA/química , Desoxiadenosinas/biossíntese , Fígado/química , Pulmão/química , Nitrosaminas/metabolismo , Animais , DNA/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Fígado/metabolismo , Pulmão/metabolismo , Estrutura Molecular , Nitrosaminas/química , Ratos
15.
Chem Res Toxicol ; 34(3): 901-911, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595290

RESUMO

Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.


Assuntos
Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/metabolismo , Pirimidinas/metabolismo , Aflatoxina B1/química , Sequência de Bases , Biocatálise , DNA/química , Adutos de DNA/química , DNA Glicosilases/química , Guanina/química , Humanos , Estrutura Molecular , Pirimidinas/química
16.
Chem Res Toxicol ; 34(3): 695-698, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417436

RESUMO

Alkylation represents a main form of DNA damage. The N2 position of guanine is frequently alkylated in DNA. The SOS-induced polymerases have been shown to be capable of bypassing various DNA damage products in Escherichia coli. Herein, we explored the influences of four N2-alkyl-dG lesions (alkyl = ethyl, n-butyl, isobutyl, or sec-butyl) on DNA replication in AB1157 E. coli cells and the corresponding strains with polymerases (Pol) II, IV, and V being individually or simultaneously knocked out. We found that N2-Et-dG is slightly less blocking to DNA replication than the N2-Bu-dG lesions, which display very similar replication bypass efficiencies. Additionally, Pol II and, to a lesser degree, Pol IV and Pol V are required for the efficient bypass of the N2-alkyl-dG adducts, and none of these lesions was mutagenic. Together, our results support that the efficient replication across small N2-alkyl-dG DNA adducts in E. coli depends mainly on Pol II.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Bacteriano/metabolismo , Desoxiguanosina/metabolismo , Escherichia coli/metabolismo , Adutos de DNA/química , Replicação do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Escherichia coli/citologia , Estrutura Molecular
17.
Biopolymers ; 112(1): e23405, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33098572

RESUMO

Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.


Assuntos
Citosina/química , Reparo do DNA , Corantes Fluorescentes/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Pareamento de Bases , Biocatálise , Ilhas de CpG/genética , Citidina/análogos & derivados , Citidina/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Pirróis/química , Proteína Supressora de Tumor p53/genética
18.
Chem Res Toxicol ; 34(1): 119-131, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33381973

RESUMO

Smoking is a leading cause of lung cancer, accounting for 81% of lung cancer cases. Tobacco smoke contains over 5000 compounds, of which more than 70 have been classified as human carcinogens. Of the many tobacco smoke constituents, 1,3-butadiene (BD) has a high cancer risk index due to its tumorigenic potency and its abundance in cigarette smoke. The carcinogenicity of BD has been attributed to the formation of several epoxide metabolites, of which 1,2,3,4-diepoxybutane (DEB) is the most toxic and mutagenic. DEB is formed by two oxidation reactions carried out by cytochrome P450 monooxygenases, mainly CYP2E1. Glutathione-S-transferase theta 1 (GSTT1) facilitates the conjugation of DEB to glutathione as the first step of its detoxification and subsequent elimination via the mercapturic acid pathway. Human biomonitoring studies have revealed a strong association between GSTT1 copy number and urinary concentrations of BD-mercapturic acids, suggesting that it plays an important role in the metabolism of BD. To determine the extent that GSTT1 genotype affects the susceptibility of individuals to the toxic and genotoxic properties of DEB, GSTT1 negative and GSTT1 positive HapMap lymphoblastoid cell lines were treated with DEB, and the extent of apoptosis and micronuclei (MN) formation was assessed. These toxicological end points were compared to the formation of DEB-GSH conjugates and 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) DNA-DNA cross-links. GSTT1 negative cell lines were more sensitive to DEB-induced apoptosis as compared to GSTT1 positive cell lines. Consistent with the protective effect of GSH conjugation against DEB-derived apoptosis, GSTT1 positive cell lines formed significantly more DEB-GSH conjugate than GSTT1 negative cell lines. However, GSTT1 genotype did not affect formation of MN or bis-N7G-BD cross-links. These results indicate that GSTT1 genotype significantly influences BD metabolism and acute toxicity.


Assuntos
DNA/metabolismo , Compostos de Epóxi/metabolismo , Glutationa Transferase/metabolismo , Linhagem Celular , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Genótipo , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Estrutura Molecular
19.
Chembiochem ; 22(7): 1114-1121, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32737940

RESUMO

RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing.


Assuntos
Sondas Moleculares/química , RNA/química , Transcriptoma , Adutos de DNA/química , DNA Complementar/química , DNA Complementar/metabolismo , Sondas Moleculares/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
20.
DNA Repair (Amst) ; 96: 102944, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161373

RESUMO

E. coli AlkB and human ALKBH2 belong to the AlkB family enzymes, which contain several α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases that repair alkylated DNA. Specifically, the AlkB enzymes catalyze decarboxylation of α-KG to generate a high-valent Fe(IV)-oxo species that oxidizes alkyl groups on DNA adducts. AlkB and ALKBH2 have been reported to differentially repair select etheno adducts, with preferences for 1,N6-ethenoadenine (1,N6-εA) and 3,N4-ethenocytosine (3,N4-εC) over 1,N2-ethenoguanine (1,N2-εG). However, N2,3-ethenoguanine (N2,3-εG), the most common etheno adduct, is not repaired by the AlkB enzymes. Unfortunately, a structural understanding of the differential activity of E. coli AlkB and human ALKBH2 is lacking due to challenges acquiring atomistic details for a range of substrates using experiments. This study uses both molecular dynamics (MD) simulations and ONIOM(QM:MM) calculations to determine how the active site changes upon binding each etheno adduct and characterizes the corresponding catalytic impacts. Our data reveal that the preferred etheno substrates (1,N6-εA and 3,N4-εC) form favorable interactions with catalytic residues that situate the lesion near the Fe(IV)-oxo species and permit efficient oxidation. In contrast, although the damage remains correctly aligned with respect to the Fe(IV)-oxo moiety, repair of 1,N2-εG is mitigated by increased solvation of the active site and a larger distance between Fe(IV)-oxo and the aberrant carbons. Binding of non-substrate N2,3-εG in the active site disrupts key DNA-enzyme interactions, and positions the aberrant carbon atoms even further from the Fe(IV)-oxo species, leading to prohibitively high barriers for oxidative catalysis. Overall, our calculations provide the first structural insight required to rationalize the experimentally-reported substrate specificities of AlkB and ALKBH2 and thereby highlight the roles of several active site residues in the repair of etheno adducts that directly correlates with available experimental data. These proposed catalytic strategies can likely be generalized to other α-KG/Fe(II)-dependent dioxygenases that play similar critical biological roles, including epigenetic and post-translational regulation.


Assuntos
Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Domínio Catalítico , Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Simulação de Dinâmica Molecular , Adenina/análogos & derivados , Adenina/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Biologia Computacional , Citosina/análogos & derivados , Citosina/metabolismo , Adutos de DNA/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Oxigenases de Função Mista/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...